

In situ immune impact of neo-adjuvant nivolumab + ipilimumab combination (ICB) before standard chemoradiation therapy for FIGO IB3-IVA cervical squamous carcinoma patients.

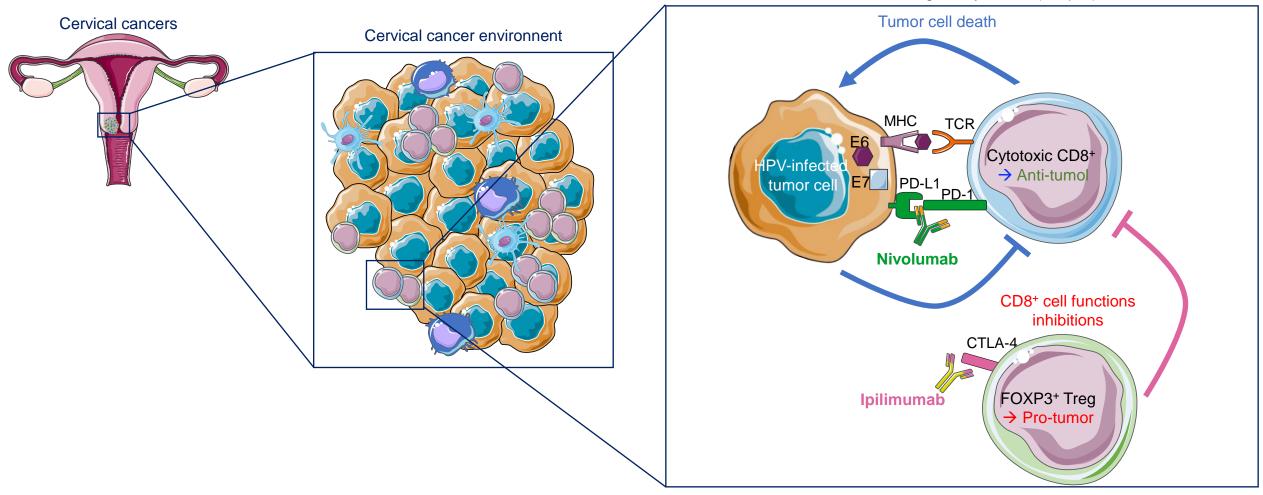
COLIBRI trial, a GINECO study.

<u>Isabelle RAY-COQUARD</u>, Marie-Christine Kaminsky-Forrett, Ryotaro Ohkuma, Aymeric De Montfort, Florence Joly, Isabelle Treilleux, Sarah Ghamry-Barrin, Diana Bello-Roufai, Pierre Saintigny, Antoine Angelergues, Lucas Michon, Anne-Claire Hardy-Bessard, Alexandra Lainé, Aude-Marie Savoye, Justine Berthet, Christophe Caux, Fabrice Lecuru, Bertrand Dubois, Sarah Lagarde Bétrian.

Background

- Locally-advanced cervical cancer (LACC) remains an unmet therapeutic need, with more than 40% rate of recurrence despite treatment with the standard of care chemoradiation (RTCT)¹
- Common prognostic factors include FIGO stage, pathological tumor type, LVSI
- A high tumor CD8+/FOXP3+ cell ratio is associated with better clinical outcome after neoadjuvant chemotherapy in cervical cancer patients²
- Immune checkpoint blockade (ICB) represents a new treatment option in cervical cancer, with survival benefits in the recurrent setting^{3,4}
- However, Durvalumab, in combination with and following RTCT, did not significantly improved PFS in patients with high-risk LACC compared with RTCT alone in CALLA trial⁵
- Alternative neo-adjuvant ICB and differential sequencing of radiation therapy and ICB are worth exploring

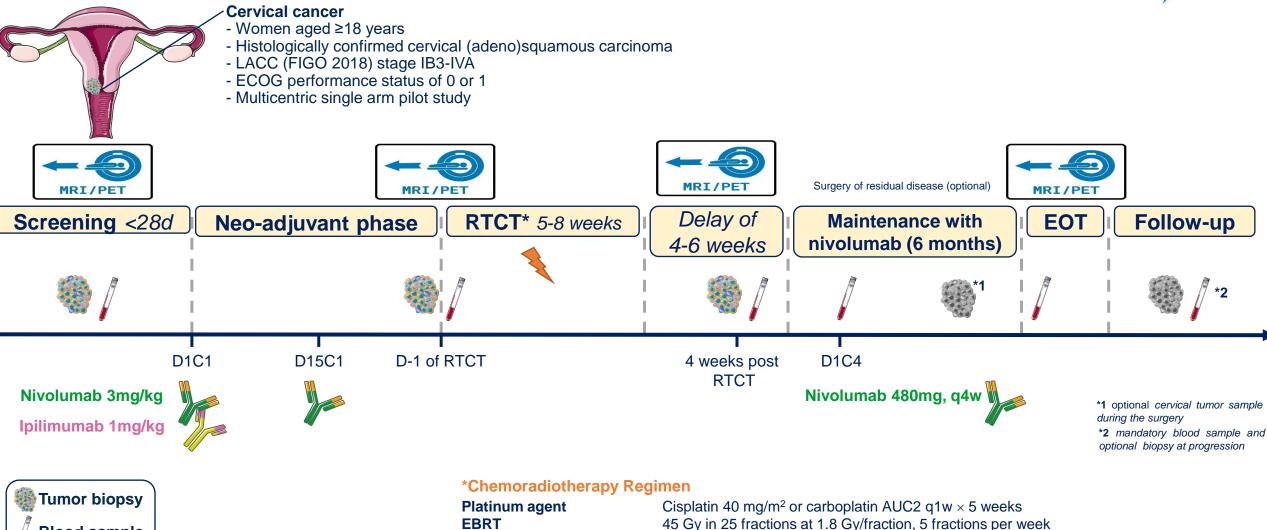
¹Morris MD, et al. *N Engl J* Med. 2009;340:1137-1143. ²Liang Y, et al. *Diag Pathol*. 2018;13:93. ³Tewari KS, et al. *N Engl J Med*. 2022;386:544-555. ⁴Colombo N, et al. *N Engl J Med*. 2021;385:1856-1867. ⁵Monk B, et al. *ICGS*. 2022.



Rationale

ICB and interaction between tumor cells, CD8+ effector T-cells (CD8+) and FOXP3+ regulatory T cells (Foxp3+)

- 1. How does neo adjuvant dual PD-1/CTLA4 blockade impact immune response in cervical cancer?
- 2. Is sequencing ICB before and after RTCT impacting on immune response and anti tumor efficacy?



COLIBRI inclusion criteria & Study design

High-dose rate: 27.5–30 Gy; Low/pulsed-dose rate: 35–40 Gy

Blood sample

Brachytherapy

Objectives of the COLIBRI trial

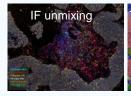
Primary objective:

To measure the CD8+/FOXP3+ lymphocyte ratio in pre- versus post-ICB therapy biopsies in patients treated with neo-adjuvant combination of nivolumab + ipilimumab, before starting standard RTCT.

→ **Primary endpoint:** CD8+/FOXP3+Treg cell relative change between pre- and post-ICB biopsies by multiplex-immunofluorescence (multi-IF) tissue imaging

Secondary objectives:

- Evolution of the immune microenvironment (CD8+, FOXP3+Treg, DCs, MPs,...) before & after RTCT, and at progression
 → multi-IF and HTG
- Objective Response Rate (ORR) by RECIST 1.1 criteria before & after RTCT, and at EOT for local tumor and global response
- Correlation between clinical activity assessment and biological changes of the immune microenvironment
- Safety
- Progression Free Survival and Overall Survival at 3 years
- Other exploratory translational research on immune microenvironment and HPV molecular signatures


Methods – multi-IF and HTG

7-colors multiplex immunofluorescence tissue imaging (multi-IF)^{1,2}:

CD3-CD8-CD20-Foxp3-Ki67-CK-DAPI

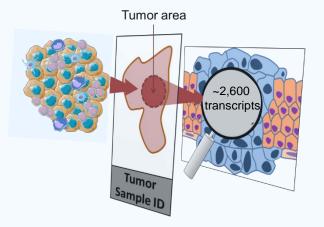
Digital image analysis by machine learning

Densities - Total and proliferating (Ki67+) CD8+ (CD3+CD8+Foxp3-)

(cells/mm²) - Total Foxp3+ (CD3+Foxp3+)

Ratio

- Total CD8+ / Total Foxp3+


- Proliferating CD8+ / Proliferating Total Foxp3+

¹Small M, et al. *Acta Neuropath*. 2018;135:569-579 ²Plaschka M, et al. *J Immunother Cancer*. 2022

Transcriptomic analysis

High-Throughput Genomic sequences (HTG):

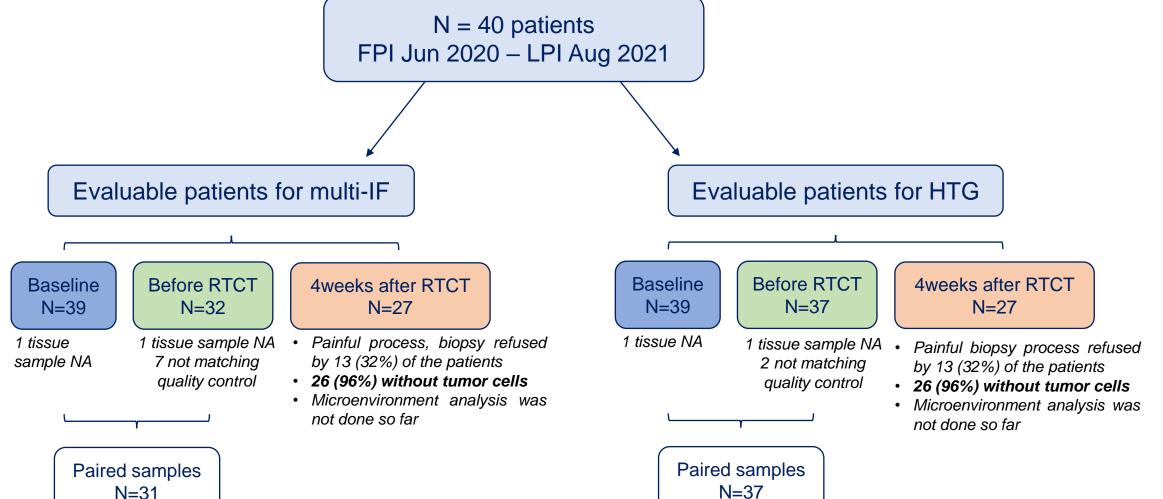
Evaluation of the 'HOT' score as biomarker for immunologically active tumors which may benefit from immunotherapies³

HOT signature gene list: CCL19, CCR2, CCR4, CCR5, CD27, CD40LG, CD8A, CXCL10, CXCL11, CXCL13, CXCL9, CXCR3, CXCR6, FASLG, FGL2, GZMA, GZMH, IDO1, IFNG, IRF8, LAG3, LYZ, MS4A1, PDCD1, TBX21, TLR7, TLR8

³Foy JP, et al. *Eur J Can*. 2022;174:287-298.

Statistical methodology

- **Sample size**: Assuming a standard deviation of 14 units, **40 patients were enrolled** providing a 95% confidence interval with a precision of 5 units around the mean estimation of the CD8+/FOXP3+ relative change of lymphocytes from pre- to post-treatment biopsies.
- Depending on the distribution of the ratio, Student paired t-tests or Wilcoxon signed rank tests were used to compare pre and post treatment biopsies.
- Association between multi-IF or HTG data and the tumoral responses was assessed using Wilcoxon Mann-Whitney or Fisher exact tests.
- P values less than 0.05 were considered to indicate statistical significance in all tests.
- All analyses were performed using SAS® v9.4 (SAS Institute Inc., Cary, NC, USA) and GraphPad Prism 9



Available tumor samples

NA = not available

Post dual ICB = before RTCT

Patients characteristics

	Analysis population (N=40)
Median follow-up, weeks (min; max)	38 (24; 71)
Median age, years (min; max)	55.0 (31.0; 77.0)
Weight (kg)	60.5 (40.0; 90.0)
ECOG performance status, n(%)	
0	26 (65.0%)
1	14 (35.0%)
FIGO 2018 stage tumor, n (%)	
IB3	1 (2.5%)
IIA2	1 (2.5%)
IIB	19 (47.5%)
IIIB	1 (2.5%)
IIIC1	8 (20.0%)
IIIC2	6 (10.0%)
IVA	4 (10.0%)
Histology, n(%)	
Squamous cell carcinoma	38 (95%)
Adeno squamous carcinoma	2 (5.0%)
PD-L1 expression*, (SP263)	
< 1	3 (7%)
<u>≥</u> 1	37 (93%)

Analysis	ро	pulati	on
(N=4	1 0, ((%))	

Treatment exposure, n (%)	
Neo-adjuvant ICB phase	
Nivolumab 3mg/kg C1D1 & C1D15	40 (100)
Ipilimumab 1mg/kg C1D1	40 (100)
Chemotherapy during RT	
Cisplatin	39 (97.5)
Carboplatin	3 (7.5)
EBRT delivered, per protocol	40 (100)
Brachytherapy delivered	36 (90)*
Radiotherapy delivered in ≤ 55 days	39 (97.5)
Maintenance therapy	39 (97.5)
Completed 6 cycles with Nivolumab (480 mg total dose each cycle)	34 (85)**

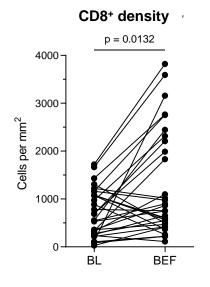
^{*+ 4} patients who received external tumor boost with EBRT

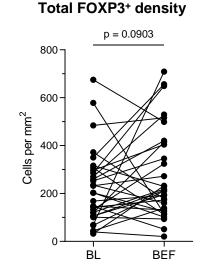
^{**}early discontinuation: 2 pts for progression, 2 for AEs and 2 for patient's decision

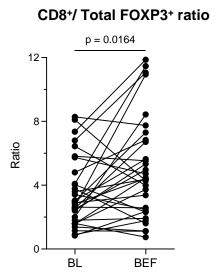
Safety- adverse events

	Neo-adjuvant ICB	RTCT	Maintenance
	N = 40 (%)	N = 40 (%)	N = 39 (%)
Any AE	33 (82.5)	38 (95)	35 (87.5)
Any AE of CTCAE grade ≥ 2	14 (35)	33 (82.5)	17 (42.5)
Any TRAE of CTCAE grade 3 or 4 *	1 (2.5)	11 (27.5)	8 (20)
Possibly related to Nivolumab Possibly related to Ipilimumab Possibly related to RTCT	1 (2.5) 1 (2.5) NA	3 (7.5) 3 (7.5) 10 (25)	6 (15) 1 (2.5) 5 (12.5)
Any AE with outcome of death	0 (0)	0 (0)	0 (0)
Any AE leading to discontinuation of ICB	0 (0)	NA	2 (5)
Possibly related to ICB			1 (2.5)
Any AE leading to discontinuation of RTCT	NA	0 (0)	NA
Possibly related to ICB	NA	0 (0)	NA

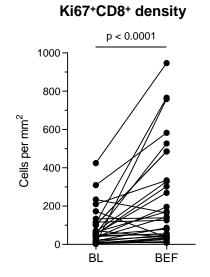
^{*}Grade 3 or 4 related to ICB are lymphopenia, neutropenia, asthenia, muscular squeletal pain, cutaneous rash, proctitis, liver enzymatic abnormalities

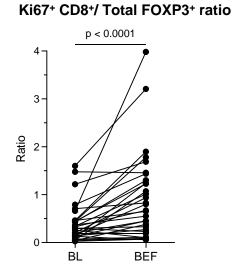


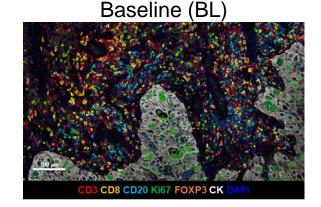

Relative changes before/after ICB by multi-IF



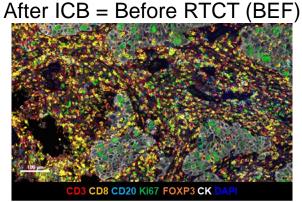
Neo-adjuvant dual ICB significantly increases tumorassociated CD8+T cells and CD8+/FOXP3+ ratio



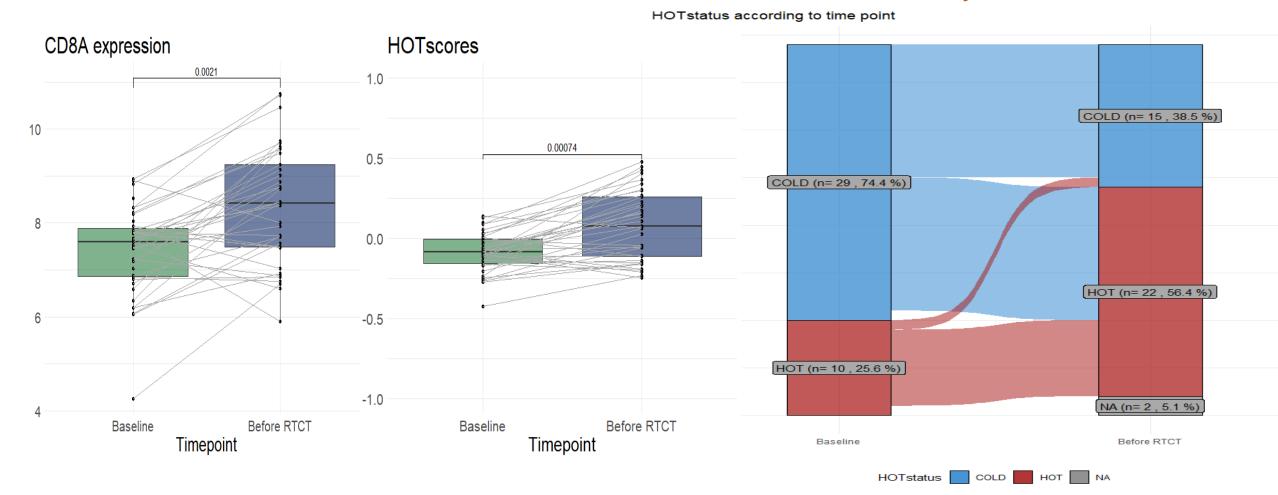




Similar results with **proliferative** CD8+ T cells & CD8+/FOXP3+ ratio



009-04



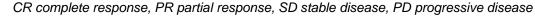
Results – HTG

Significant increase of the *CD8A* gene expression and the 'HOT' score after ICB was observed

Evolution of the 'HOT' score after neoadjuvant ICB

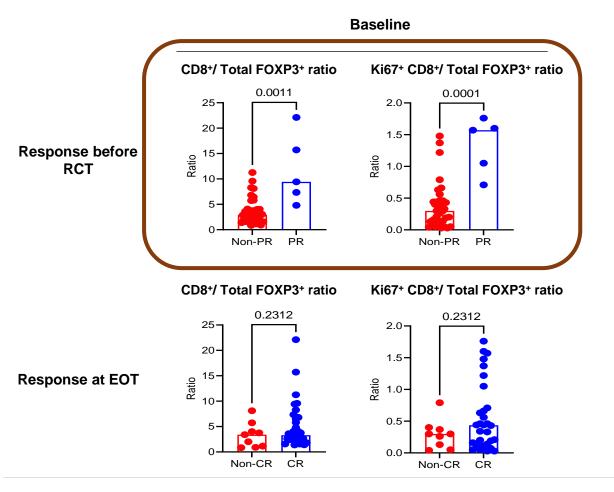
Efficacy by response rate After neo-adjuvant ICB, post RTCT and end of maintenance

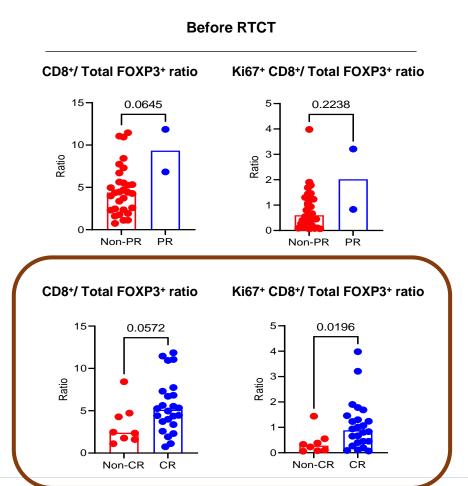
RESPONSE	RR	Before RTCT N (%)		Post RTCT N(%)		End of maintenance	
Local control	CR	-		27	(68)	34	(85)
	PR	6	(15)	12	(30)	3	(8)
	SD	32	(80)	1	(2)	1	(2)
	PD	2	(5)	-		2	(5)
Global response	CR	-		26	(65)	31	(78)
	PR	5	(13)	13	(33)	5	(12)
	SD	33	(82)	1	(2)	-	
	PD	2	(5)	-		4	(10)


RESPONSE	FIGO STAGE	COMPLETE RESPONSE RATE
Global	FIGO I/II	81%
response	FIGO III/IV	74%

3 pts with initial FIGO IIIC 4 pts have no change before/after ICB for:

- CD8+ infiltrate
- CD8+/Foxp3 ratio
- Cold 'HOT' score

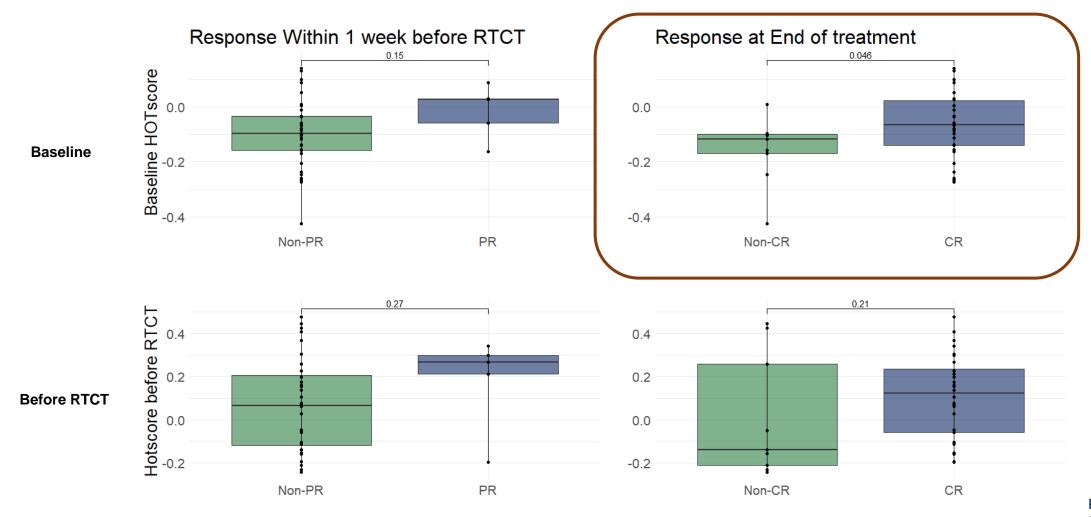



Correlation of the CD8+/FOXP3+ ratio with response rate by multi-IF

Elevated CD8+/FOXP3+ ratio at baseline correlate with partial response before RTCT

Elevated proliferative CD8+/FOXP3+ ratio correlate with CR at the end of maintenance therapy

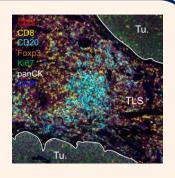
PR, partial response CR, complete response



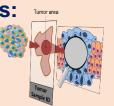
Correlation of the 'HOT' score with response rate

The 'HOT' score at baseline correlates with complete response at the end of maintenance therapy

Perspectives



- 1. Clinical end points (2025)
- → PFS
- \rightarrow os



- 4. To analyze the systemic immune response by characterizing the phenotype and activation status of immune cells and anti-HPV T-cell response:
- → Multiparametric flow cytometry (mFC)
- → ELISA spots

- 2. To evaluate the neighborhood of CD8+ and FOXP3+ immune cells and spatial localization of TLS, DCs, MPs and PD-L1 expression
- → Multi-IF
- \rightarrow IHC

- 3. To analyze gene expression profiles:
- → RNA-sequencing
- → Whole Exome Sequencing (WES)

- 5. To characterize HPV molecular status, integration sites and viral genes deletion to correlate with prognosis and response to ICB
- → Capture HPV technics and NGS

To analyze HPV circulating tumor DNA (ctDNA) to correlate HPVctDNA kinetics with treatment response

→ Digital droplet PCR (ddPCR)

Conclusion

- The COLIBRI trial demonstrates the acceptability and safety of a dual ICB with Nivolumab+Ipilimumab in the neo-adjuvant setting pre RTCT followed by Nivolumab monotherapy as maintenance therapy post RTCT
- 90% of LACC in COLIBRI are in complete or partial response at EOT suggesting no detrimental effect from sequencing ICB before RTCT
- Using multi-IF or HTG methods, expansion of CD8+ cells (including proliferative ones), elevated CD8+/FOXP3+ ratio and 'HOT' score were significantly increased post neo-adjuvant dual ICB
- Both the CD8+/FOXP3+ ratio defined by multi-IF and the 'HOT' score correlated with response to treatment
- These data, combined with on-going translational research, offer support for further studies with neo-adjuvant sequencing strategies to evaluate ICB alternative therapies in LACC

Acknowledgements

We thank all the patients, their families, the investigators, and the staff.

GINECO - France				
I Ray-Coquard				
F Lecuru				

A Angelergues D Bello-Roufai

AC Hardy-Bessard

F Joly

MC Kaminsky-Forrett

S Lagarde Bétrian

MA Mouret-Reynier

AM Savoye

L Venat-Bouvet

Sponsor ARCAGY

S Adam

C Montoto-Grillot

D Cardoso

E Cantelli

S Armanet

B Votan

IDMC

T De La Motte Rouge

X Paoletti

C Chargari

Pathologists

I Treilleux

G Bataillon

C Genestie

C Jeanne

PA Just

EMS, CLB

A Lainé

Statisticians

A de Montfort

S Chabaud

PATHEC, CLB

I Treilleux

A Colombe-Vermorel

L Odeyer

PGEB, CLB

S Tabone-Eglinger

Centre de

Ressources
Biologiques of

French

Cancer

(INCa)

National

Institute

PGC, CLB

V Attignon

J Auclair

ARCAGY-

<u>GINECO</u>

(Institut Curie)

L Fuhrmann

A Degnieau

E Glais

E Glais

LICL, CRCL

B Dubois

C Caux

R Ohkuma

S Barrin

J. Berthet

Team:

Integrated

analysis of the

dynamics of cancer. CRCL

P Saintigny

L Michon

M Lamkhioued

FundingBristol Myers Squibb

